U.S. Department of Energy
— 1

Lawrence
Livermore
National

Laboratory

="

Preprint
UCRL-JC-147742

Parallelization of an
Adaptive Multigrid
Algorithm for Fast Solution
of Finite Element
Structural Problems

N. K. Crane, I. D. Parsons, K. D. Hjelmstad

This article was submitted to
International Conference on Computational Engineering and
Sciences, Reno NV., July 31- August 2, 2002

March 21, 2002

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov /bridge

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov /ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http://www lInl.gov/tid/Library.html

mailto:reports@adonis.osti.gov
http://www.llnl.gov

Parallelization of an Adaptive Multigrid Algorithm for Fast
Solution of Finite Element Structural Problems

N. K. Crane'. [. D. Parsons” and K. D. Hjelmstad'

Summary

Adaptive mesh refinement selectively subdivides the clements of a coarse user supplicd mesh to
produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement
coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given
discretization error using far fewer clements than uniform refinement. A geometric multigrid solver
uses increasingly finer discretizations of the same geometry to produce a very fast and numerically
scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating
the different meshes required by the multigrid solver. This paper describes the implementation of a
scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented
that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel
deformation problem on an SGI Origin 2000,

Two challenges must be met when implementing adaptive multigrid algorithms on massively
parallel computing platforms. First, although the fine mesh for which the solution is desired may be
large and scaled to the number of processors. the multigrid algorithm must also operate on much
smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted
to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require
separate partitioning, further complicating the load balance problem. This paper shows that, when the
proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with
several hundreds of processors.

Adaptive Mesh Refinement

Adaptive mesh refinement is a well-known technique for using a posteriori error estimation to
automatically produce a non-uniform mesh from a relatively coarse user defined mesh (e.g., [1]. [2]). In
this paper, h-refinement is employed. in which a low order element, such as an eight node hexahedral
element, is subdivided into a number of similar elements. Both isotropic and anisotropic refinement is
employed, whereby the error estimator dictates if the original hexahedral element is to be split into
eight (for isotropic refinement) or less (for anisotropic refinement) new elements. Linear constraints arc
introduced on each refined mesh to maintain the required degree of interelement continuity.

To demonstrate the approach. consider Figure {. The mesh shown on the left of the figure is a
section of a coarse star-grain rocket fuel mesh. The entire rocket fuel grain is a long cylinder: a star
shaped hole is cut into the cylinder to increase the initial exposed interal surface area. The structural
loading on the fuel consists of a large internal pressure and an acceleration loading. The rocket fuel is
modeled with first-order hexahedral finite clements and linear clastic material properties. It is desired to
find the static displacements and stresses in the fuel to some user specified discretization crror

" University of Illinois, Urbana, IL 61801; n-crancf@uiuc.cdu
“ Lawrence Livermore National Laboratory, Livermore, CA 94551; parsons {4 llnl.gov
* University of [llinois. Urbana, 1L 61801 kdh uiuc.edu

http://Ilnl.gov
http://uiuc.edu

tolerance. The coarse mesh is solved and the crror estimated using an a posteriori ¢crror estimator
proposed by Zienkiewicz and Zhu [3]. Elements with high error are refined to produce the new mesh
shown in the middle of Figure 1. The problem is solved on the new mesh and the error cstimated. The
new mesh is refined to produce a vet tiner mesh shown on the right of Figure 1. This process continues
until the user specified discretization crror tolerance is reached. For the rocket fuel problem. an
adaptively refined mesh can yield a discretization error tolerance of 1% using about 4.000,000
elements. Uniform refinement requires cight times as many clements to yield the same quality of
solution.

Figure 1: User supplied coarse and adaptively refined meshes.

The Geometric Multigrid Method

A geometric multigrid solver uses multiple refinements of the same coarse mesh to accelerate the
solution of a system of equations [4]. Let the meshes shown on the left, center and right of Figure 1
represent the coarse, the intermediate and the fine meshes in a multigrid sequence, respectively. These
meshes will be denoted as meshes 1, 2 and 3, respectively. It is required to solve the system of
equations produced by the finite element discretization of mesh 3. The coarser meshes are used to
accelerate this solution process via a multigrid V-cycle shown in Figure 2.

Depending on the problem, between one and ten multigrid V-cycles are usually required to achieve
an accurate solution to the fine mesh equations. The relaxation steps use a few cycles of conjugate
gradient (CG) relaxation to improve the solution on a given mesh. The rocket fuel problem uses 6 CG
cycles in each relaxation step. The coarse mesh solution step uses CG relaxation as a solver. The
number of iteration cycles to solve the coarse mesh rocket fuel problem is about 200. The restriction
step restricts the residual (i.e., forces) from a fine mesh to the next coarser mesh. The interpolation step
interpolates a solution (i.e., displacements) on a coarse mesh to the fine mesh.

The advantage of a multigrid solver is that the computational work is O(V), where NV is the number
of fine mesh unknowns. An iterative solver such as the CG method is typically O(N *%). while a direct
factorization method is generally around O(V ™) for three dimensional problems. Using an adaptive
multigrid solver to compute the static solution of a 4,000,000-element mesh rocket fuel problem on a

single processor of an Origin 2000 takes approximately 7 hours. Solving the same problem using the
CG method as a solver requires 192 hours. about 27 times as long.

4///__\

Relax on Mesh 3) Relax on Mesh 3

Restrict to Mesh 2
Interpolate to Mesh 3

Relax on Mesh 2 Relax on Mesh 2

Restrict to Mesh | I[nterpolate to Mesh 2

Solve on Mesh |

Figure 2: Schematic of a 3 mesh multigrid V-cycle.

Parallelization of an Adaptive Multigrid Algorithm

The majority of the computational work in a multigrid cycle is spent performing the relaxations on
the various mesh levels. The serial timings for an example multigrid solution cycle are shown in Table
1. For the serial case, the total cycle time is dominated by the fine mesh relaxation step. The coarse
mesh solution phase of the cycle requires only about 2% of the total solution time.

Mesh | Number of Number of Serial Time
Number | Elements | Relaxation Cycles | (Seconds)
1 1,440 200 28.9

2 10,801 6 6.42

3 70.282 6 40.9

4 388.339 6 228

5 1,747.098 6 1040

Table 1: Serial multigrid cycle timings.

Figure 3 shows CG relaxation speed-up curves for the different mesh sizes considered in Table 1.
Two important trends ‘are evident in this figure. First, the larger meshes of the multigrid sequence
produce much better speed-ups than the smaller meshes. This phenomenon can be explained by
considering a solid cube with cube-shaped mesh partitions. Let a coarse mesh of this region have 64
elements and be partitioned onto 64 processors. The computational workload of each partition is
proportional to the number of elements, 1. The communication load for each partition is proportional to
the number of boundary nodes, 8. A fine mesh of this solid has a total of 32,758 elements partitioned
with 512 elements per processor. The computational workload for each partition is 512; the number of
boundary nodes is 386. For this example the coarse mesh has a computgtion to communication ratio of
0.125: the fine mesh a computation to communication ratio of 1.33. Thus, the coarse meshes must bear
more communication load per computational etfort than the fine meshes.

256
w1 440 elements
192

10,801 elements
£y
) 70,282 elements
8 128
un)' | 388,339 elements
64 =1 747,098 elements
0 PO ~ - -
0 64 128 192 256

Number of Processors

Figure 3: CG relaxation cycle speed-up curves on Origin 2000 by mesh size.

Second, on the coarse meshes the algorithm reaches a point where adding more processors not only
produces little additional speed-up, but actually has a detrimental eftect. This eftect is caused by
increasing communication latency when using larger sets of processors. As more processors are used,
the processors needed by the computation are physically farther apart. Thus, as more and more
processors are used. the latency of communicating between processors increases. The postulate that
relaxation slow-down is caused by increasing message latency is reinforced by the observation that
when using the SGI Origin 2000 a significant performance reduction occurs when going from 64 to 65
or more processors. The Origin is constructed from boxes containing 64 processors each. Once more
than 65 processors are used, inter-box communication is required, which has a much higher latency
compared to intra-box communication.

Using a reduced set of processors for the coarse mesh relaxations brings the communication to
computation ratio back into balance and reduces the detrimental effect of communication latency.
Using a reduced set of processors deliberately allows some of the available processors go idle during
the coarse mesh computations. Let £ denote the number of elements on a mesh. Based on Origin 2000
timing runs, the optimal number of processors £, to use is approximately

P,=0.5JE. (0
When using the optimal number of processors. the maximum obtainable speed-up is
SU, =0.25VE. ()

Table 2 shows how the multigrid mesh sequence described in Table | performs in parallel on 256
processors. The relative contribution of the coarse mesh solve time is much greater than in the serial
case. The coarse mesh solution requires about30% of the total solution time in parallel versus only 2%
in the serial case. Addition of more processors will continue to improve speed-up on the fine mesh, but
will have a reduced effect on the performance of the coarse meshes. Thus, the overall parallel
performance of a multigrid code is often strongly dependent on the performance on coarse mesh
operations. ’

‘[Mesh | Number of | Maximum Obtainable * Paraltel Time
| Number | Elements Speed-up "~ {Seconds)
| 1.440 9 ' 3.21
2 10,801 26 : 0.251
3 70.282 66 : 0.620
4 388.339 128 1 1.78
5 1.747.098 208 T 14|

Table 2: Parallel multigrid cycle timings for 236 processors.

The second obstacle to obtaining good speed-up in a parallel adaptive multigrid code is achicving
good Joad balance on each of the multigrid meshes. A mesh with good load balance is partitioned such
that the computational work across all processors is balanced.Fo r the case of CG relaxations, good load
balance occurs when all processors own approximately the same number of elements. A sample
multigrid mesh hierarchy partitioned on two processors is shown in Figure 4. The shaded clements are
given to processor 1. the white elements to processor 2. The mesh partitioning shown has good load
balance on mesh 3. However. using the same spatial partitions on mesh | and mesh 2 yields poor load
balance on the mesh | and mesh 2 operations.

Mesh | Mesh 2 Mesh 3
TTITT
AREENI

Figure 4: Example partitioning using the same spatial partitions on each mesh.

A good solution to the multi-mesh load balance problem is multi-partitioning. A multi-partition
algorithm creates a separate partition for each mesh. Each mesh’s partition balances the load and
minimizes the communication for that mesh only. Multi-partitioning requires additional communication
during the interpolation and restriction phases of the multigrid cycle. During these phases data must be
transferred from the old partitioning layout to the new partitioning layout. Communication (represented
by gray lines) is shown for the multigrid solution of a multi-partitioned mesh in Figure 5. Partition
boundary communication is required in the mesh relaxation steps and partition change communication
is required in the interpolation and restniction steps. ParMETIS is used for mesh partitioning to produce
partitions which simultaneously have good load balance. minimalbou ndary communication. and are as
similar to one another as possible (to reduce data transfer volume in the interpolation and restriction
steps.)

Results

When using reduced processor sets on the coarse meshes and multi-partitioning, good speed-ups
can be obtained for a parallel adaptive multigrid solver. The total code speed-up for a 34,000.000
element static deflection rocket tuel problem is shown in Figure 6. The speed-ups are for the entire code
consisting of error cstimation. adaptive retinement and multigrid solution' steps. On 256 processors. the
4.000.000 clement problem is solved in 150 seconds, which is a speed-up of 190 over the serial time.

Although the speed-up of the multigrid solver (190) 15 not as good as a CG solver would likely be
(233). the numerical efticiency of the multigrid solver (27 times faster than CG for this mesh) makes
the overall solution time for the multigrid solver much less. The overall code speed-up gains from
adaptive refinement. multigrid solution and parallel execution are multiplicative. Adaptive refinement
allows solving a problem with a smaller mesh, multigrid allows solving that mesh very efticiently, and
parallelization substantially accelerates the multigrid solver. Thus, parallel adaptive multigrid can be
used to produce very fast solutions to structural problems.

H
1T
[

Q i T 1
3 | e measured |
k-] | ‘
@1

a sl optimal

«n L

64 128 192 256

Number of Processors
Figure 6: Parallel adaptive multigrid speed-up for 4,000,000 element rocket fuel mesh

References

1 Johnson, C., 1997. Numerical Solution of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, Cambridge-Lund.

2 Babuska, I. and Rheinboldt, W. C., 1980. Reliable error estimation and mesh adaptation for the
finite element method. Computational Methods in Nonlinear Mechanics. Proceedings of the
TICOM Second International Conference, pp 67-108. Amsterdam. Netherlands 1980.

3 Zienkiewicz, O. C. and Zhu. J. Z., 1987. A simple error estimator and adaptive procedure for
practical engineering analysis. International Journal for Numerical Methods in Engineering, 24,
pp. 337-357.

4 Trottenberg. U., 2000. Multigrid, Academic Press.

